In our previous blog of Apache Spark, we discussed a little about what Transformations & Actions are? Now we will get deeper into the topic and will understand what actually they are & how they play a vital role to work with Apache Spark?
What is Spark RDD?
Spark introduces the concept of an RDD (Resilient Distributed Dataset), an immutable fault-tolerant, distributed collection of objects that can be operated on in parallel. An RDD can contain any type of object and is created by loading an external dataset or distributing a collection from the driver program.where,
Resilient – capable of rebuilding data on failure
Distributed – distributes data among various nodes in cluster
Dataset – collection of partitioned data with values
- Transformations
- Actions
Transformations
Spark RDD Transformations are functions that take an RDD as the input and produce one or many RDDs as the output. They do not change the input RDD (since RDDs are immutable and hence one cannot change it), but always produce one or more new RDDs by applying the computations they represent e.g. Map(), filter(), reduceByKey() etc.Now there is a point to be noted here and that is when you apply the transformation on any RDD it will not perform the operation immediately. It will create a DAG(Directed Acyclic Graph) using the applied operation, source RDD and function used for transformation. And it will keep on building this graph using the references till you apply any action operation on the last lined up RDD. That is why the transformation in Spark are lazy.
Narrow transformation — In Narrow transformation, all the elements that are required to compute the records in single partition live in the single partition of parent RDD. A limited subset of partition is used to calculate the result. Narrow transformations are the result of map(), filter().
Wide transformation — In wide transformation, all the elements that are required to compute the records in the single partition may live in many partitions of parent RDD. Wide transformations are the result of groupbyKey and reducebyKey.
Actions
Transformations create RDDs from each other, but when we want to work with the actual dataset, at that point action is performed. When the action is triggered after the result, new RDD is not formed like transformation. Thus, Actions are Spark RDD operations that give non-RDD values. The values of action are stored to drivers or to the external storage system. It brings laziness of RDD into motion.Action is one of the ways of sending data from Executer to the driver. Executors are agents that are responsible for executing a task. While the driver is a JVM process that coordinates workers and execution of the task.
Spark RDD Operations
Apache Spark’s Core abstraction is Resilient Distributed Datasets(RDD). Also, a fundamental data structure of Spark. Moreover, Spark RDDs is immutable in nature. As well as the distributed collection of objects. Basically, RDD in spark is designed as each dataset in RDD is divided into logical partitions. Further, we can say here each partition may be computed on different nodes of the cluster. Moreover, Spark RDDs contain user-defined classes.Spark PairRDD Operations
Spark Paired RDDs are nothing but RDDs containing a key-value pair. Basically, key-value pair (KVP) consists of a two linked data item in it. Here, the key is the identifier, whereas value is the data corresponding to the key value.Moreover, Spark operations work on RDDs containing any type of objects. However key-value pair RDDs attains few special operations in it. Such as, distributed “shuffle” operations, grouping or aggregating the elements by a key.
In addition, on Spark Paired RDDs containing Tuple2 objects in Scala, these operations are automatically available. Basically, operations for the key-value pair are available in the Pair RDD functions class. However, that wraps around a Spark RDD of tuples.
See the example of above mentioned RDDs: https://databricks-prod-cloudfront.cloud.databricks.com/public/4027ec902e239c93eaaa8714f173bcfc/9000630084352253/509646307872265/6405721786982255/latest.html
In our next blog, we will be discussing Spark Accumulators & Broadcast Variables.
If you like this blog, please do show your appreciation by hitting like button and sharing this blog. Also, drop any comments about the post & improvements if needed. Till then HAPPY LEARNING.
Comments
Post a Comment